Cover Page for Safety Data Sheet

Thank you for choosing CHEMetrics, Inc. We appreciate your business. In order to best serve your needs for accurate and complete Safety Data, we offer the following information as supplemental to the attached SDS.

SDS No.: S1401

Version No.: 1.1

Product Name: Catalyzer Solution for Ammonia Vacu-vials® & CHEMets® Kits

Part Nos.: A-1401

Product Descriptions:
Catalyzer Solution: Plastic bottle, contains approximately 18 mL of liquid reagent. Test kits contain one (1) bottle of solution. Catalyzer Solution packs contain six (6) bottles of solution.

Addendum to Section 14 Transport Information:
Shipping container markings and labels for this product, as received, may vary from the contents of section 14 of the SDS for one or both of the following reasons:

• CHEMetrics has packaged this product as Dangerous Goods in Excepted Quantities according to IATA, US DOT, and IMDG regulations.

• CHEMetrics has packaged this product as part of a test kit or reagent set composed of various chemical reagents and elected to ship as UN 3316 Chemical Kit, Hazard Class 9, Packing Group II or III.

In case of reshipment, it is the responsibility of the shipper to determine appropriate labels and markings in accordance with applicable transportation regulations.

Additional Information:
• “Print Date” = Revision Date (expressed as DD/MM/YYYY)
• Test kits and reagents sets may contain additional chemical reagents. See separate SDS(s).
Catalyzer Solution for Ammonia Vacu-vials & CHEMets Kits

CHEMetrics, Inc.

Chemwatch: 8-77590
SDS No: S1401
Version No: 1.1

Safety Data Sheet according to OSHA HazCom Standard (2012) requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

<table>
<thead>
<tr>
<th>Product Identifier</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Product name</td>
<td>Catalyzer Solution for Ammonia Vacu-vials & CHEMets Kits</td>
</tr>
<tr>
<td>Synonyms</td>
<td>Part No.: A-1401</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Chemical formula</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
<tr>
<td>CAS number</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

| Relevant identified uses | Component of water analysis test kits K-1403, K-1410 |

Details of the manufacturer/importer

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>CHEMetrics, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>4295 Catlett Road, Midland, VA. 22728 United States</td>
</tr>
<tr>
<td>Telephone</td>
<td>1-540-788-9026</td>
</tr>
<tr>
<td>Fax</td>
<td>1-540-788-4856</td>
</tr>
<tr>
<td>Website</td>
<td>www.chemetrics.com</td>
</tr>
<tr>
<td>Email</td>
<td>technical@chemetrics.com</td>
</tr>
</tbody>
</table>

Emergency telephone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>ChemTel Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>1-800-255-3924</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>401-813-248-0585</td>
</tr>
</tbody>
</table>

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

| GHS Classification | Not Applicable |

Label elements

| GHS label elements | Not Applicable |

| SIGNAL WORD | NOT APPLICABLE |

Hazard statement(s)

Not Applicable

Precautionary statement(s) Prevention

Not Applicable

<table>
<thead>
<tr>
<th>P101</th>
<th>If medical advice is needed, have product container or label at hand.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P102</td>
<td>Keep out of reach of children.</td>
</tr>
<tr>
<td>P103</td>
<td>Read label before use.</td>
</tr>
</tbody>
</table>

Precautionary statement(s) Response

Not Applicable
Precautionary statement(s) Storage
Not Applicable

Precautionary statement(s) Disposal
Not Applicable

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>13755-38-9</td>
<td>10</td>
<td>sodium nitroprusside</td>
</tr>
<tr>
<td>7732-18-5</td>
<td>90</td>
<td>water</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
If this product comes in contact with eyes:
- Wash out immediately with water.
- If irritation continues, seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
If skin or hair contact occurs:
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation
If fumes, aerosols or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

For cyanide intoxication (and for certain nitriles which produce cyanide ion)
- Signs symptoms of acute cyanide poisoning reflect cellular hypoxia and are often non-specific.
- Cyanosis may be a late finding.
- A bradycardic, hypertensive and tachypneic patient suggests poisoning especially if CNS and cardiovascular depression subsequently occurs.
- Immediate attention should be directed towards assisted ventilation, administration of 100% oxygen, insertion of intravenous lines and institution of cardiac monitoring.
- Obtain an arterial blood gas immediately and correct any severe metabolic acidosis (pH below 7.15).
- Mildly symptomatic patients generally require supportive care alone. Nitrates should not be given indiscriminately - in all cases of moderate to severe poisoning, they should be given in conjunction with thiosulfate. As a temporizing measure supply amyl nitrite perles (0.2ml inhaled 30 seconds every minute) until intravenous lines for sodium nitrite are established. 10 ml of a 3% solution is administered over 4 minutes to produce 20% methaemoglobin in adults. Follow directly with 50 ml of 25% sodium thiosulfate, at the same rate. IV. If symptoms reappear or persist within 1-2 hour, repeat nitrite and thiosulfate at 50% of initial dose. As the mode of action involves the metabolic conversion of the thiosulfate to thiocyanate, renal failure may enhance thiocyanate toxicity.
- Methylene blue is not an antidote. [Ellenhorn and Barceloux: Medical Toxicology]

If amyl nitrite intervention is employed then Medical Treatment Kits should contain the following:
- One box containing one dozen amyl nitrite ampoules
- Two sterile ampoules of sodium nitroprusside solution (10 ml of a 3% solution each)
- Two sterile ampoules of sodium thiosulfate solution (50 ml of a 25% solution each)
- One 10 ml sterile syringe. One 50 ml sterile syringe. Two sterile intravenous needles. One tourniquet.
- One dozen gauze pads.
- Latex gloves
- A “Biohazard” bag for disposal of bloody/contaminated equipment.
- A set of cyanide instructions on first aid and medical treatment.

- Notes on the use of amyl nitrite:
 - AN is highly volatile and flammable - do not smoke or use around a source of ignition.
 - If treating patient in a windy or draughty area provide some shelter or protection (shirt, wall, drum, cupped hand etc.) to prevent amyl nitrite vapour from being blown away. Keep ampoule upwind from the nose, the objective is to get amyl nitrite into the patients lungs.
 - Rescuers should avoid AN inhalation to avoid becoming dizzy and losing competence.
 - Lay the patient down. Since AN dilates blood vessels and lowers blood pressure, lying down will help keep patient conscious.
 - DO NOT overuse - excessive use might put the patient into shock. Experience at DuPont plants has not shown any serious after effects from treatment with amyl nitrite.

ADDITIONAL NOTES:
- Major medical treatment procedures may vary e.g. US (FDA method as recommended by DuPont) uses amyl nitrite as a methaemoglobin generator, followed by treatment with sodium nitrite and then sodium thiosulfate.

MODES OF ACTION: Amyl nitrite (AN) reacts with haemoglobin (HB) to form about 5% methaemoglobin (MHB). Sodium nitrite (NaNO2) reacts with haemoglobin to form approximately 20-30% methaemoglobin. Methaemoglobin attracts cyanide ions (CN) from tissue and binds with them to become cyanmethaemoglobin (CNMHB). Sodium thiosulfate (Na2S2O3) converts cyanmethaemoglobin to thiocyanate (HSCN) which is excreted by the kidneys. i.e. AN + HB = MHB NaNO2 + HB = MHB CN + MHB = CNMHB Na2S2O3 + CNMHB ÷ O2 = HSCN
- The administration of the antidote salts is intravenous in normal saline, Ringers lactate or other available IV fluid.
- European practice may use 4-dimethylaminophenol (DMAP) as a methaemoglobin generator. Also hydroxycobalamin (Vitamin B12a) is used. Hydroxycobalamin works by reacting with cyanide to form cyanocobalamin (Vitamin B12) which is excreted in the urine.
- European and Australian NOHSC (ASCC) propose dicyclomethane (Keloctyanor) as antidote. This acts by chelating cyanide to form stable cobaltcyanocyanide, which is excreted in the urine. In all cases hyperbaric therapy may increase the efficiency of a cyanide antidote kit.

SECTION 5 FIREFIGHTING MEASURES

Continued...
Extinguishing media

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility
None known.

Advice for firefighters

Fire Fighting
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.

Fire/Explosion Hazard
- Non combustible.
- Not considered a significant fire risk, however containers may burn.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

<table>
<thead>
<tr>
<th>Minor Spills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental hazard - contain spillage.</td>
</tr>
</tbody>
</table>
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.

<table>
<thead>
<tr>
<th>Major Spills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental hazard - contain spillage.</td>
</tr>
<tr>
<td>Minor hazard.</td>
</tr>
</tbody>
</table>
- Clear area of personnel.
- Alert Fire Brigade and tell them location and nature of hazard.
- Control personal contact with the substance, by using protective equipment as required.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

<table>
<thead>
<tr>
<th>Safe handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit all unnecessary personal contact.</td>
</tr>
<tr>
<td>Wear protective clothing when risk of exposure occurs.</td>
</tr>
<tr>
<td>Use in a well-ventilated area.</td>
</tr>
<tr>
<td>Avoid contact with incompatible materials.</td>
</tr>
<tr>
<td>When handling, DO NOT eat, drink or smoke.</td>
</tr>
</tbody>
</table>
- Wear impact- and splash-resistant eyewear.

Other information

For optimum analytical performance, store in the dark and at room temperature.

Conditions for safe storage, including any incompatibilities

<table>
<thead>
<tr>
<th>Suitable container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene or polypropylene container.</td>
</tr>
<tr>
<td>Packing as recommended by manufacturer.</td>
</tr>
<tr>
<td>Check all containers are clearly labelled and free from leaks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Storage incompatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Several members of the family described as metal cyanide complexes are endothermic and tend towards explosive instability; most are capable of violent oxidation under appropriate circumstances.</td>
</tr>
<tr>
<td>BREthericks Handbook of Reactive Chemical Hazards, 4th Edition</td>
</tr>
<tr>
<td>Ferricyanide:</td>
</tr>
<tr>
<td>mixtures with water, acids, or alcohols may slowly decompose producing hydrocyanic acid</td>
</tr>
<tr>
<td>reacts explosively with strong oxidisers, ammonia, chromium trioxide, chromic acid, chromic anhydride, sodium nitrite</td>
</tr>
<tr>
<td>reacts violently with copper(II) nitrate, trichloride.</td>
</tr>
<tr>
<td>Contact with acids produces toxic fumes</td>
</tr>
</tbody>
</table>

PACKAGE MATERIAL INCOMPATIBILITIES

Not Available

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCIDENTAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US OSHA Permissible Exposure Levels (PELS) - Table Z1</td>
<td>sodium nitroprusside</td>
<td>Cyanides</td>
<td>5 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>(as Cu)</td>
</tr>
<tr>
<td>US ACGIH Threshold Limit Values (TLV)</td>
<td>sodium nitroprusside</td>
<td>Hydrogen cyanide and cyanide salts, as CN - Cyanide salts</td>
<td>Not Available</td>
<td>Not Available</td>
<td>5 mg/m³</td>
<td>TLV® Basis: URT irr; headache; nausea; thyroid eff</td>
</tr>
<tr>
<td>US ACGIH Threshold Limit Values (TLV)</td>
<td>sodium nitroprusside</td>
<td>Iron salts, soluble, as Fe</td>
<td>1 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>TLV® Basis: URT & skin irr</td>
</tr>
</tbody>
</table>
EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium nitroprusside</td>
<td>Sodium nitrofenacyanide</td>
<td>0.3 mg/m³</td>
<td>3.3 mg/m³</td>
<td>20 mg/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Original IDLH</th>
<th>Revised IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium nitroprusside</td>
<td>50 mg/m³</td>
<td>25 mg/m³</td>
</tr>
<tr>
<td>water</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard “physically” away from the worker and ventilation that strategically “adds” and “removes” air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly.

Personal protection

- Safety glasses with side shields
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available.

Eye and face protection

- Wear general protective gloves, eg. light weight rubber gloves.
- The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Suitability and durability of glove type is dependent on usage.

Skin protection

See Hand protection below.

Hands/feet protection

- Wear general protective gloves, eg. light weight rubber gloves.
- The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Suitability and durability of glove type is dependent on usage.

Body protection

See Other protection below.

Other protection

- Overalls,
- Barrier cream,
- Eyewash unit.

Thermal hazards

- Not Available

Recommended material(s)

Respiratory protection

Not Applicable

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".
The effect(s) of the following substance(s) are taken into account in the computer-generated selection:

Catalyzer Solution for Ammonia Vacu-vials & CHEMets Kits

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEOPRENE</td>
<td>A</td>
</tr>
<tr>
<td>VITON</td>
<td>A</td>
</tr>
<tr>
<td>NATURAL RUBBER</td>
<td>C</td>
</tr>
<tr>
<td>PVA</td>
<td>C</td>
</tr>
</tbody>
</table>

* CPI - Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation.

SECTON 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Physical state</th>
<th>Relative density (Water = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Liquid</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Continued...
SECTION 10 STABILITY AND REACTIVITY

Reactivity

- **Chemical stability**: Product is considered stable and hazardous polymerisation will not occur.
- **Possibility of hazardous reactions**: See section 7
- **Conditions to avoid**: See section 7
- **Incompatible materials**: See section 7
- **Hazardous decomposition products**: See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Not normally a hazard due to non-volatile nature of product.

Ingestion

The material has **NOT** been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence.

A number of materials such as cyanamide, calcium cyanamide, cyanates, isocyanates, isomithile, thiocyanates, ferricyanide and ferrocyanide, and cyanoacetates do not exhibit the same toxic effects as cyanides and nitriles.

The toxicity of complex cyanides depends on its stability in solution, ability to release cyanide ions on dissociation and alteration in pH of solutions. They are compounds in which the cyanide anion is incorporated into a complex or complexes and they are different in chemical and toxicologic properties from simple cyanides.

Skin Contact

The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

Eye

Although the liquid is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn).

Chronic

Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course.
SECTION 12 ECOLOGICAL INFORMATION

Toxicity
On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and/or delayed, to the structure and/ or functioning of natural ecosystems.

Soil Guidelines: Dutch Criteria:
free cyanide: 1 mg/kg (target)
20 mg/kg (intervention)
complex cyanide (pH 5): 5 mg/kg (target)
50 mg/kg (intervention)

Air Quality Standards: no safe guidelines recommended due to carcinogenic properties.

For Complex Metallocyanides:
Environmental Fate: Metallocyanide complexes have a wide range of stabilities. Cobaltocyanide is difficult to destroy with highly destructive acid distillation in the laboratory. Metallocyanide complexes must be regarded as a delayed source of free cyanide in natural aquatic systems which will be released under certain conditions (e.g., ultraviolet irradiation, decreased pH, increased temperature) regardless of stability.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW (LogKOW = -1.38)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW (KOC = 14.3)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

| Product / Packaging disposal | Dispose of according to federal, state, and local regulations. |

SECTION 14 TRANSPORT INFORMATION

Labels Required

| Marine Pollutant | NO |

Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

- sodium nitroprusside (13755-38-9) is found on the following regulatory lists:
 - US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants
 - US - Idaho - Limits for Air Contaminants
 - US - Hawaii Air Contaminant Limits - Skin Designation
 - US - Washington Permissible exposure limits of air contaminants - Skin
 - US - Alaska Limits for Air Contaminants - Skin Designation
 - US OSHA Permissible Exposure Levels (PELs)
 - SkIN - California Permissible Exposure Limits for Chemical Contaminants - Skin
 - US - North Carolina Permissible Exposure Limits (PELs) for Air Contaminants - Skin Designation [NLV]
 - US - Oregon Permissible Exposure Limits (Z1) - Skin

- water (7732-18-5) is found on the following regulatory lists:
 - US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

SECTION 16 OTHER INFORMATION

Other information

Continued...
Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:
www.chemwatch.net/references

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.